
 
 
 
 

A NoSQL Data Management Infrastructure for Bridge 
Monitoring 

 
Seongwoon Jeong*1, Yilan Zhang2, Sean O’Connor2, Jerome P. Lynch2,  

Hoon Sohn3, and Kincho H. Law1 
 

1Department of Civil and Environmental Engineering, Stanford University,  
473 Via Ortega, Stanford, CA 94305-4020, USA 

2Department of Civil and Environmental Engineering, University of Michigan,  
2350 Hayward St., Ann Arbor, MI 48109-2125, USA 

3Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 
291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea 

 
(Received   keep as blank   , Revised   keep as blank   , Accepted   keep as blank   ) 

 
Abstract. Advances in sensor technologies have led to the instrumentation of sensor networks for bridge monitoring 
and management. For a dense sensor network, enormous amount of sensor data are collected. The data need to be 
managed, processed, and interpreted. Data management issues are of prime importance for a bridge management 
system. This paper describes a data management infrastructure for bridge monitoring applications. Specifically, 
NoSQL database systems such as MongoDB and Apache Cassandra are employed to handle time-series data as well 
the unstructured bridge information model data. Standard XML-based modeling languages such as OpenBrIM and 
SensorML are adopted to manage semantically meaningful data and to support interoperability. Data interoperability 
and integration among different components of a bridge monitoring system that includes on-site computers, a central 
server, local computing platforms, and mobile devices are illustrated. The data management framework is 
demonstrated using the data collected from the wireless sensor network installed on the Telegraph Road Bridge, 
Monroe, MI.  
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1. Introduction 
 

As sensor technologies mature, there have been increasing interests in the deployment of 
sensors for large scale infrastructure monitoring. Many bridges are now instrumented with dense 
sensor network to collect valuable information for management purposes (Jang et al. 2010, Zhou 
and Yi 2013, Koh et al. 2013). The advent of wireless sensor technologies has led to significant 
reduction in the installation cost of sensor network on bridge structures (Lynch and Loh 2006, 
Lynch et al. 2009). Developments of advanced nondestructive evaluation technologies have 
facilitated the assessment of the integrity and health of a structure by enabling the detection of the 
onset of damages (Sohn et al. 2015). With the permanent installation of sensors, recent research 
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efforts have been attempted to extract statistically meaningful information and to apply data-driven 
predictive analysis with the collected long term sensor data (Cross et al. 2013, O'Connor et al. 
2014). Until now, structural health monitoring research efforts have been mostly focused on the 
developments of new sensor technologies and data analysis techniques. Very little efforts have 
been devoted to deal with the fundamental issues of data management. The data issues need to be 
dealt with properly in order to facilitate long term lifecycle bridge monitoring and management. 

Information models and interoperability standards have been proposed to support data 
management platform in various engineering disciplines (Ray 2002, Cheng et al. 2010). In the 
building and construction domains, building information modeling (BIM) has been widely 
employed to support integrated project delivery process and data exchange (Eastman et al. 2011). 
The development of BIM standard has enabled software to support data exchange among different 
application platforms. Research efforts have also been initiated towards developing bridge 
information modeling (BrIM) standards for bridge structures (Chen and Shirolé 2006, Shirolé et al. 
2008, Samec et al. 2014). Current BrIM efforts focus primarily on the geometric information and 
material properties (Karaman et al. 2013, Ali et al. 2014). Standard markup language, such as 
XML, is employed as the modeling language to facilitate data interoperability. In order to be useful 
for comprehensive bridge lifecycle management, BrIM needs to be extended to include 
descriptions of sensor data and integrated with a bridge monitoring system. 

One conventional approach to handle sensor data in structural monitoring applications is to 
employ traditional relational database management systems (RDBMS). The key advantages of 
RDBMSs are their reliability, convenient query language, and the extensive user base. For 
example, Smarsly et al. (2013) have proposed a cyber infrastructure for wind turbine monitoring 
using MySQL database, and Li et al. (2006) have utilized SQL Server 2000 for health monitoring 
system for the Shandong Binzhou Yellow River highway bridge. However, recent studies have 
identified the limitations of RDBMSs, in particular, for the scalability and flexibility issues (Hecht 
and Jablonski 2011, Han et al. 2011, Padhy et al. 2011). With the amount of data collected from a 
dense sensor array, using RDBMS as a backend database for a bridge monitoring system is neither 
efficient nor desirable. Furthermore, the basic data structure for schema representation in RDBMS 
as tables is inefficient to handle the BrIM and XML-based schemas, which typically involve 
hierarchical and unstructured data structure. 

Advances in cyber physical systems and cloud computing services share many significant 
technologies that can be deployed for the management of infrastructure monitoring data. Cloud 
computing can be broadly defined as a utility over a network model that has emerged as a cost-
effective and efficient model to enable and deliver business and engineering services (Law et al. 
2016). Driven by the need for storing, managing and retrieving large online data records with 
heterogeneous formats, much research have been devoted to develop non-relational database and 
non-traditional file management systems. Examples of open source databases that have been 
deployed by cloud service providers include Apache Cassandra, Apache H-Base and MongoDB 
(Grolinger et al. 2013). These non-traditional database systems are noted as NoSQL (Not only 
SQL) database systems which are designed to handle unstructured data, which are the types of data 
commonly found in engineering models and structural monitoring systems. Recent studies have 
shown that NoSQL database systems have significant advantages over RDBMS in terms of 
flexibility and scalability (Hecht and Jablonski 2011, Han et al. 2011, Padhy et al. 2011). For 
example, Le et al. (2014) proposed an Internet of Things (IoT) platform to handle the data 
collected by sensors and concluded that NoSQL database systems, such as Apache Cassandra, 
consistently have better performance than relational database systems for handling and managing 



sensor data. Furthermore, NoSQL database systems have been shown to have better scalability in 
handling massive IoT data and have better query performance for sensor network data (Li et al. 
2012, Thantriwatte and Keppetiyagama 2011) 

This study investigates a NoSQL data management framework which is designed for bridge 
monitoring applications. The system is designed not only to support the management of bridge 
monitoring data but also to facilitate data utilization by engineering design and analysis platforms. 
Based on the needs of the data management framework, Apache Cassandra and MongoDB are 
selected as the backend database systems to support pertinent data archiving and efficient querying. 
For interoperability purpose, we adopt OpenBrIM 2.0 (an open source XML based BrIM schema) 
to represent the bridge information and SensorML (a standard for sensor and IoT applications) to 
describe sensor information. In addition, software tools and interfaces are developed to support 
automated data flow and to enhance data interoperability. To demonstrate software integration, 
external analysis modules such as structural analysis and machine learning modules are employed. 
Lastly, a mobile interface is developed to allow users to easily access information stored in the 
database and to retrieve meaningful information from the server. The NoSQL database 
management system is demonstrated using the bridge information model and the monitoring data 
of the Telegraph Road Bridge (TRB) in Monroe, Michigan.  
 
 
2. Selection of data management tools 
 

This section discusses a sensor data management framework and the selection of data standards 
and the data management tools. There exist many NoSQL database systems, each has its own 
strengths and disadvantages. Careful evaluation of the tools is necessary for successful 
development of a data management system. Furthermore, use of standard modeling languages to 
store the metadata is important to facilitate interoperability of managed information. In this section, 
we first describe the overall data management system infrastructure for bridge monitoring 
applications. NoSQL database tools are then selected based on the defined requirements. Lastly, 
open standards for bridge information modeling and engineering applications are introduced to 
store the metadata of the system. 
 

2.1 Sensor data management system framework 
 
There have been few research efforts focusing on the data management infrastructure for 

structural monitoring (McNeill 2009, Zhang et al. 2012, Smarsly et al. 2013, Law et al. 2014). As 
shown in Fig. 1, a typical data management system for infrastructure monitoring consists of four 
main components: (1) onsite computers, (2) main (data repository) server, (3) local (desktop) 
computers, (4) and web or mobile user interfaces. The role for each of the components can be 
described as follows:  

• An onsite computer is an autonomous in situ system that stores sensor data temporarily and 
serves as a buffer between the sensor network and the main server. If necessary, the onsite 
computer also performs pre-process of raw data or simple analysis. Once the measured sensor 
data is transmitted from the sensor network installed on bridge structure, the onsite computer 
stores the data to its file or data management system and sends the data to the main server. 
• The main server plays a pivotal role for a bridge monitoring system: the main server not 
only persistently stores all the sensor data, the analysis results, and other metadata including 



bridge information model and sensor information, but also allows local desktop computers or 
end-users to easily access the database and to retrieve the data. Therefore, the main server 
needs to adopt a database system which is scalable and flexible to handle the amount of the 
data which are continuously acquired from the sensor network. Furthermore, the system should 
adhere to the standard data structure commonly used to represent engineering models and 
sensor data and to facilitate easy data exchange and utilization.  
• A local (desktop) computer serves as a computing platform that engineers employ to carry 
out the computational tasks involved in the bridge monitoring and management system. While 
the role of the main server is to maintain its desirable performance and stability as a centralized 
data archive, a local desktop computing platform periodically retrieves sensor data along with 
relevant metadata from the server, performs analysis, and sends the analysis results back to the 
main server.  
• Finally, a user interface allows the mobile users or engineers direct, real time access to the 
computational tools as well as the in-situ information at the bridge site a via web-interface or a 
mobile device.  
According to the data requirements, the main data server will potentially handle significant 

amount of data records, which are not necessarily homogeneous or of the same data types. 
Therefore, the backend database for the main server should primarily focus on flexibility and 
scalability that would allow long term data archival and extendibility that will support multi-tier 
service developments. On the other hand, an onsite computer or a local desktop computer only 
needs to temporarily store a limited amount of data. Therefore, the focuses of the database system 
for an onsite or a local desktop computer are not necessarily related to the long-term archiving of 
large amount of data, but should be on efficient data retrieval to support data parsing and analysis. 
 

2.2 Selection of NoSQL database tools 
 
There are many existing NoSQL database systems with different features and properties. Since 

NoSQL database tools have been developed to support specific data types required by the 
applications, selecting an appropriate database tool for specific application is very important for 
successful deployment of data management system (Hecht and Jablonski 2011). Based on the data 
types, current NoSQL database tools can be categorized into column family stores, document-
oriented stores, key-value stores, and graph databases (Hecht and Jablonski 2011, Han et al. 2011, 
Padhy et al. 2011). 

• The column family databases have the advantages for large scale distributed data storage. 

 
Fig. 1 Data management system for infrastructure monitoring 



• The document oriented databases support schema-less data structure and powerful query 
performance for heterogeneous data format.  
• The key-value stores show very fast read and write speed utilizing in-memory operation. 
• A graph database is optimized to manage data records that can be represented as a graph 
data structure. 

In this study, we employ Apache Cassandra, a column family database to satisfy the data 
requirement of the main server, and MongoDB, a document oriented database to satisfy the data 
requirement of the onsite computer and the local computer. Key-value stores, while suitable for 
efficient data retrieval, are ruled out in this study, because of their limited data capacity. Lastly, the 
data schemas, to be described in the latter section, do not lend themselves suitable for the graph 
database. 

 
2.2.1 Apache Cassandra: Database system for supporting persistent archiving 
 
Apache Cassandra database, one of the most popular column family data storage systems, has 

been developed and utilized to support large scale management and data processing systems 
(Hewitt 2010, Hecht and Jablonski 2011). The fundamental data structure of Apache Cassandra 
consists of key space, column family, row, and key-value pairs. Although Apache Cassandra does 
not support all the functionalities of RDBMSs, Apache Cassandra is able to handle many of the 
emergent big data issues. For example, Apache Cassandra database system shows not only 
consistent performance regardless of the size of the data, but also fast performance based on hash 
algorithm and efficient write operation (Hewitt 2010, Hecht and Jablonski 2011, Le et al. 2014). 
Moreover, the system is highly available by guaranteeing failure at any single point would not 
cause total system failure (Hewitt 2010). On the other hand, Apache Cassandra currently supports 
only limited query and data aggregation.  

Furthermore, the flexible data schema of Apache Cassandra has the advantages on storing 
heterogeneous data by allowing different attribute sets for different rows (Hewitt 2010). In the 
bridge monitoring applications, bridge metadata such as bridge information model and sensor 
information usually involves hierarchical and heterogeneous data, respectively. The flexible data 
schema feature of Apache Cassandra is particularly useful for managing metadata for bridge 
monitoring. As an example, in the building and construction application, Cheng and Das (2013) 
have implemented the BIM-PDE server using Apache Cassandra.  

Because of availability, scalability and schema flexibility, many organizations have shifted to 
Cassandra NoSQL database system to manage high volume of data (read and write) transactions 
(Branson 2014, Datastax 2011, Datastax 2012). In this study, we employ Apache Cassandra to 
support long term data archival and system extendibility in the main server. 

 
2.2.2 MongoDB: Database system for supporting efficient data retrieval 

 
MongoDB is another popular document oriented database systems designed for schema-less 

data structure with high performance and scalability. The data structure of MongoDB consists of 
the database, collection, and binary JSON (BSON) schema-less documents (Chodorow 2013). The 
JSON document enables easy change or extension of the data model and human-understandable 
data structure such as object-oriented data format. MongoDB also has the advantages on 
representing complex data structure by enabling relationships between documents and supporting 
hierarchical data structure. Moreover, MongoDB dramatically improves read and write 



performances at the cost of join operation and transactions (Chodorow 2013). Although MongoDB 
does not support some of query and aggregation functions of RDBMSs, it still supports a rich set 
of query operations including indexing, range query, and aggregation operations. With the flexible 
schema and high performance, MongoDB is particularly suitable when expensive queries and 
transactions are not required. 

Based on its flexibility, performance and scalability, MongoDB has been widely used in many 
fields including Internet of Things (IoT) applications and real-time analysis (Chodorow 2013, 
Hows et al. 2014). To support flexible data schema and high query performance, the database 
management system for bridge management employs MongoDB for onsite computers and local 
engineers’ desktop computers. 

 
2.3 Selection of standardized modeling language 
 
Information models and interoperability standards have been proposed as a means to support 

integrated project delivery process and lifecycle management in engineering domain. By adhering 
to the data exchange standard, information models can be translated into different file formats for 
different applications in a seamless manner, which can reduce work loads and human errors on 
manual file conversion (Eastman et al. 2011, Bernstein et al. 2012). There have been several 
research efforts to develop information modeling standards for bridge engineering applications 
(Chen and Shirolé 2006, Shirolé et al. 2008, Karaman et al. 2013, Ali et al. 2014). To facilitate 
interoperability, semantically meaningful languages, such as extensible markup languages (such as 
XML), are employed to represent the bridge model. Research efforts have also been attempted to 
integrate bridge management information to bridge information models (Marzouk and Hisham 
2011, Samec et al. 2014), and these efforts show great potentials of Bridge Information Modeling 
to better support integrated data management for bridge monitoring. 

In this study, we utilize the open-source XML-based OpenBrIM data schema to represent the 
bridge model and the relevant information (Chen 2013). OpenBrIM describes a bridge information 
model as a set of hierarchical objects, where an object contains information such as coordinates or 
material properties. OpenBrIM also allows users to define template element for parametric design. 
Although the BrIM model written in XML usually involves complex data structures, which are not 
easy to manage using traditional RDBMS, the flexible data schema of NoSQL database systems 
can elegantly handle the complex BrIM data. 

While the current OpenBrIM schema can describe the basic elements of bridge information 
model, it lacks essential elements for bridge monitoring and management applications such as 
sensor metadata and analytical model information. Therefore, we need to supplement the database 
system with additional components, so that the system can manage the necessary information for 
bridge monitoring. To achieve this goal, we adopt Sensor Model Language (SensorML), a standard 
for defining measurement and post-measurement processes proposed by the Open Geospatial 
Consortium (OGC), to store the sensor information in the main server (Open Geospatial 
Consortium, 2014). SensorML is written in XML, and it provides extensive metadata for storing 
sensor information. In addition, we also investigate the data schema of CSI Bridge (2015) to add 
analytical model information to the data management system. Fig. 2 illustrates the overall data 
management framework reflecting the selected database tools and standard modeling languages.  



3. Infrastructure system for bridge monitoring 
 

This section describes the detailed architectural design for the bridge monitoring system based 
on NoSQL database tools. Data schema and interface software are developed to facilitate data 
utilization and data integration. We also employ several programming libraries to support remote 
connection to the NoSQL database systems as well as seamless data flow. In this section, first, data 
schema descriptions for sensor data, bridge information model, and sensor information are 
described. We then focus our discussion on the architecture of the proposed system and its 
individual components.  
 

3.1 Data schema description 
 
An appropriate data schema can significantly facilitate system automation and improve data 

management efficiency. It should be noted that with NoSQL database, the defined data schema can 
be easily revised and scaled according to user needs. There are three basic types of data in the 
monitoring system: sensor data, sensor information, and bridge information model. The analysis 
results can share the same schema for the sensor data. In the proposed system framework, 
MongoDB installed on an onsite computer and a local computer requires data schema for the 

 
Fig. 2 Data management framework based on NoSQL database 



sensor data, while Apache Cassandra requires data schema for sensor information and bridge 
information model in addition to the sensor data. The standard modeling languages such as 
OpenBrIM and SensorML are employed to define the data schema for interoperability. 

 
3.1.1 Sensor data (MongoDB) 
 
Fig. 3 describes the data schema for sensor data defined for MongoDB. In the current 

implementation, the database is named after the bridge structure. In addition, we use a single 
collection named repos to manage the sensor data. We take advantage of MongoDB’s hierarchical 
data structure to categorize sensor data for ease of data retrieval (Jeong et al. 2015b). The root 
node for a single data acquisition (DAQ), named daqevent, contains the timestamp of the DAQ 
event. The non-leaf nodes, named group and sensor, not only categorize sensor data according to 
user defined sensor group and sensor id/channel, but also provide metadata of DAQ such as 
sampling rate. The leaf document named sensordata collects a list of measured data over a certain 
time period along with the timestamp. Currently, the interface program is tuned to allow each 
document to store the sensor data measured over a period of one second (Jeong et al. 2015a). For 
example, if the sampling rate of a sensor is 5Hz, then the measured data is discretized into buckets 
where each bucket has five consecutive data and is stored in a single sensordata document. Since 
the upper limit of data size of a document is 16MB, this discretization strategy is required to 
prevent exceeding the maximum data size which can be caused by sensors that have high sampling 
rate (Jeong et al. 2015a). 
 

3.1.2 Sensor data (Apache Cassandra) 
 
Fig. 4 shows the data schema defined for sensor data in Apache Cassandra. In the current 

implementation, the key space is named after the bridge structure, and the column family is named 
sensordata. While the consistent hashing algorithm of Apache Cassandra has great advantages on 
managing big data with distributed computing nodes, the partitioning strategy could deteriorate the 
query performance for sequential data by distributing them to different physical locations. To deal 
with this problem, we implement a time-series data modeling scheme for Apache Cassandra 

 
Fig. 3 Data schema of sensor data on MongoDB 



(McFadin 2015). As shown in Fig. 4, the row key is defined according to the sensor id and the year 
and month of timestamp in the form of sensorID|yyyymm. Furthermore, the timestamp of the 
sensor data is used for the name of a column, while the corresponding sensor data is used for the 
value of the column. With this time-series modeling scheme, the time-series data can be stored 
sequentially to disk in sorted order, thereby enhancing range query efficiency. Currently, the 
interface program is tuned to make each column to store up to one second of time-series data 
acquired by a single sensor channel. 

 
3.1.3 Sensor information 
 
The main server also manages the sensor information such as sensor id, sampling rate, and 

output type, and allows user to utilize those information by different applications including data 
analysis and management of sensor. For interoperability, we implement SensorML, a standard for 
IoT applications, and define a list of metadata for bridge monitoring applications (Open Geospatial 
Consortium 2014). To manage sensor information, a column family named sensorinformation is 
prepared in Apache Cassandra. Fig. 5 illustrates the data schema defined for the sensor data. A 
single row is assigned to store a single sensor’s metadata. The primary key that uniquely identifies 
a sensor consists of the sensor id and the installation date of the sensor, since there could be 
different sensors sharing the same sensor id over time. In addition, index is defined on the output 
of a sensor (e.g. strain, acceleration, and temperature), since same type of sensors are often utilized 
together. Although the sensor information is typically heterogeneous, the flexible data schema of 
Apache Cassandra can handle the unstructured information elegantly. For example, the sensor 

 
Fig. 4 Data schema of sensor data on Apache Cassandra  

 
Fig. 5 Data schema of sensor information on Apache Cassandra  



information of u42ch0 in Fig. 5 contains incomplete data set due to the lack of output_uom entity. 
While traditional relational database systems enforce identical set of attributes to every single row, 
the flexible data schema of Cassandra allows different attribute set for each row, and thus, 
elegantly handles incomplete data sets that do not contain all the components defined by 
SensorML (Hecht and Jablonski 2011, Hewitt 2010). 

 
3.1.4 Bridge information model 
 
Bridge information model repository in the main server stores all the information about a 

bridge structure including, but not limited to, geometric and analytic model information. For 
example, an element in a bridge information model includes not only the detailed coordinate 
information (geometric information), but also the connectivity and load information (analytic 
model information). This study employs OpenBrIM 2.0 schema by Chen et al (2013) as the basis 
for the data schema representing the bridge information model. OpenBrIM uses XML as the 
language-neutral data format to facilitate data exchange and improve interoperability. Since the 
OpenBrIM lacks schema for analytical model, we investigate the data schema of CSI Bridge 
(2015), a finite element (FE) analysis program, and extracts the important elements that are needed 
for structural analysis. 

Fig. 6 shows the data schema for BrIM repository in the Apache Cassandra database. Bridge 
information model data is stored in a column family named bridgeinformation. Most of the rows in 
the column family represent a unit element of the bridge information model, and their row keys are 
defined according to the id of the elements. Each row stores the element’s attributes such as 
geometry and nodal connectivity in separate columns. The value of each column is a XML string 
containing appropriate information based on OpenBrIM schema. Some special rows contain 
general information for FE analysis including node information, material properties, and load 
information. Although a bridge information model usually involves objects that may have different 
attributes-value pairs, their heterogeneous object sets can be handled rather flexibly within a single 
column family with Apache Cassandra (instead of using multiple relational tables) (Hewitt 2010). 
 

3.2 System architecture  
 

  
Fig. 6 Data schema of bridge information model on Apache Cassandra  



Fig. 7 shows the overall architecture of the bridge monitoring system. As described in Section 2, 
the system consists of four major components including onsite computers, main server, local 
computers, and user interfaces. Interface software tools are developed to support many functions 
including data processing, network handling, and connection to the database systems. In addition, 
the interface software for each component is developed to enable seamless data flow. Various 
Application Programming Interface (API) tools are available for implementation. For example, 
MongoDB provides APIs supporting many programming languages to help the users to easily 
utilize the database system. Similarly, Apache Cassandra provides convenient APIs as well as a 
Cassandra Query Language (CQL), which is very similar to the structured query language (SQL). 
In this study, Python is chosen as the primary programming language to implement the functions 
needed for the proposed system including data processing and data transmission. 

 
3.2.1 Onsite computer 
 
An onsite computer receives the sensor data from sensor network, stores the data in MongoDB, 

and sends the data to the Apache Cassandra database in the main server. For this study, we employ 
an older version of MongoDB (version 2.0.6) since the onsite computers and controllers installed 
in some bridge monitoring and sensor network systems employ older versions of the Microsoft 
operating system and do not support a recent version (version 2.2 or higher) of the MongoDB 
system. Two interface programs written in Python are developed to automate the data flow (Jeong 
et al. 2015b). The first program, named onsite.py, is in charge of sending new sensor data to the 
MongoDB’s repository. Once the new sensor data is transmitted from a sensor network, onsite.py 
parses the raw sensor data into the defined data schema and is stored in the database using 
PyMongo, a MongoDB API for Python. 

Similarly, the second program, named tomain.py, parses the sensor data in the MongoDB into 
the defined data schema for Apache Cassandra and sends the data to the main server. The 
tomain.py employs an API for Apache Cassandra called Cassandra Driver. Since the in situ 
condition is not necessarily stable, we implement error handlers that can handle errors due to 

 
Fig. 7 System architecture of cyber infrastructure  



unstable network connection. In addition, bridge monitoring system typically involves large 
amount of sensor data, even though the network speed on site is typically slow in comparison to 
the data rate. To handle a timeout error due to slow network connection, we loosen the connection 
timeout constraint of Cassandra Driver. The second program also records whether a data bucket 
has been successfully sent to the main server, so that we can prevent unnecessary duplicate data 
transmission to the Cassandra database when the onsite system is accidently rebooted.  
 

3.2.2 Main server 
 
The main server serves a central data repository of the bridge monitoring system. Apache 

Cassandra (version 2.0.16) is implemented as the backend database for the main server. Apache 
Cassandra in the main server is designed to store mainly four kinds of data such as sensor data, 
sensor information, bridge information model, and analysis result. Apache Cassandra keeps 
listening to the request from onsite computers and local computers through allocated ports on the 
network. Once a request from Cassandra Driver API is delivered, Apache Cassandra automatically 
handles the request and sends the appropriate response back to the device. Since the size of sensor 
data is usually quite large, the setting of Cassandra is tuned to use as much as memory as possible 
for efficient data processing.  

In addition to the Cassandra database, the main server also implements HTTP server to handle 
requests from the users using BaseHTTPServer, a Python module for Internet protocol. The HTTP 
server keeps listening to the user request from a user’s mobile device. Once a URL request is 
received, the HTTP server parses the URL into query and parameter, retrieves relevant data from 
Apache Cassandra database using Cassandra Driver, and returns the data to the user. Currently, the 
HTTP server only supports simple GET requests to query sensor data and sensor information.  

 
3.2.3 Local computer 
 
A local computer is essentially a desktop-based computing platform that retrieves data, perform 

analysis, and push the analysis results back to the Apache Cassandra in the main server. Since 
some data analysis modules require very expensive computational costs, the decentralized strategy 
helps the main server to be isolated from such operations and to maintain its performance as the 
central data repository. To automate data flow from Apache Cassandra database in the main server 
to the analysis software in the local computer, several interface programs written in Python are 
developed (Jeong et al. 2015b). In addition to Cassandra Driver, we use MATLAB Engine (an 
interface between MATLAB and Python), scikit-learn (a tool for machine learning in Python), and 
rpy2 (an interface to R for Python process) to demonstrate a diverse set of data analysis platforms. 
In addition, the local computer also employs MongoDB in case the user wants to temporarily store 
the data in the local computer. 

 
3.2.4 User interface 
 
Development of user interface is an important task to facilitate the utilization of bridge 

monitoring data for bridge management and decision making processes. In this study, we develop 
a prototype iOS application using Swift 2, a programming language for iOS. This application 
deploys many Swift APIs including view controller (UIViewController), button (UIButton), table 
(UITableView) and map view (UIMapView). The application provides functions to retrieve sensor 



data and sensor information from the main server. For example, if a user touches “sensor 
information” button on the screen, the application sends a GET request to the HTTP server in the 
main server using the networking API of iOS. The HTTP server then processes the request and 
return relevant data to the user’s mobile device. Once the mobile device receives the data, the 
application displays the retrieved sensor information as tables for viewing. Currently, the prototype 
application supports simple data retrieval for sensor data and sensor information. 

 
 
4. Implementation 

 
To test the data management infrastructure, we use the sensor data sets collected from 

Telegraph Road Bridge (TRB) in Monroe, Michigan (shown in Fig. 8 (a)) and its bridge model 
(modelled in CSI Bridge (2015)) and sensor information (previously stored in Microsoft Excel). 
The sensor network installed on the Telegraph Road Bridge consists of 14 accelerometers, 40 
strain gauges, and 6 thermistors, as described by O’Connor et al. (2014, 2015). Fig. 8 (b) shows 
the layout of the sensor network (O’Connor et al. 2015). The data sets include seven weeks of 
sensor data: one week per month from August 2014 to February 2015. The sensor network 
acquires data for a one-minute time duration on every 2 hours interval. While the accelerometers 
collect the measurements at the sampling rate of 200 Hz, the sampling rate of the strain gauges and 
the thermistors is set at 100 Hz.  

 
4.1 Data management: storage and retrieval 
 
To simulate the in situ bridge monitoring scenario, a script written in Python that periodically 

sends the sensor data sets to the onsite computer. As discussed in Section 3, once the sensor data is 
delivered to the onsite computer, the interface program (onsite.py) on the onsite computer 
automatically re-structures the raw data according to the defined data schema for MongoDB and 
stores the parsed data to MongoDB. Fig. 9 shows a screenshot of the onsite.py in operation. Once a 
data set for a single data acquisition event is stored in MongoDB in the onsite computer, another 

  
(a) Side view (b) Type and location of sensors installed on Telegraph Road 

Bridge (O’Connor et al. 2015) 
Fig. 8 Telegraph Road Bridge, Monroe, MI  



interface program on the onsite computer (tomain.py) parses the data set stored in MongoDB to the 
defined data schema for Apache Cassandra and uploads the data to the Apache Cassandra database 
in the main server. Fig. 10 shows a screenshot of the tomain.py in operation. The sensor data stored 
in Apache Cassandra in the main server can be retrieved using Cassandra Driver (for local 
computer) or URL request (for mobile device). Fig. 11 shows an example of data retrieval for a 
desired time period using a mobile device. 

The bridge information model is parsed into the defined data schema and stored in the Apache 
Cassandra in the main server. For storing the bridge information model, we export the FE model 
into Microsoft Excel format using CSI Bridge’s exporting function. The exported model is then 
converted into the defined data schema and stored in the Apache Cassandra in the main server. 

 
Fig. 9 onsite.py: Python script storing sensor data to MongoDB in on-site computer 

 

 
Fig. 10 tomain.py: Python script storing sensor data to Apache Cassandra database in main server 

 

    
(a) User interface for querying (b) Retrieved sensor data 

Fig. 11 Sensor data retrieved from Apache Cassandra in main server using mobile device 



Once the data are stored, the bridge information model can be retrieved in different file formats. 
Fig. 12 (a) and (b) show the retrieved FE model (Excel file format) visualized using CSI Bridge 
(2015) and the retrieved BrIM geometry model (XML file format) visualized using the OpenBrIM 
viewer, respectively. In this study, we develop and utilize Python scripts to convert, store, and 
retrieve the bridge information model. Similarly, sensor information also needs to be stored in the 
Apache Cassandra in the main server according to the defined data schema. To conduct this task, 
we develop a Python script to parse and send the sensor information to the main server. Fig. 13 
shows the sensor information retrieved using CQLSH, a command line client for Apache 
Cassandra.  

 
4.2 Data analysis using long term sensor data 

 
To demonstrate the utilization of local computer as a computing platform (typically employed 

by engineers), we employ two analysis modules: modal analysis module and machine learning 
module. The implementation of these modules for the Telegraph Road Bridge has been previously 
illustrated using a cyber-enabled wireless monitoring system (O’Connor et al. 2014, Zhang et al. 
2016). In this study, we employ the modules by utilizing the proposed NoSQL data management 
infrastructure for bridge monitoring. We utilize a Matlab-based Subspace Identification module 
(Overschee 2012) to extract modal properties from the acceleration data stored in the main server. 
The modal properties are computed on the local computer using the following steps (Jeong et al. 
2015b): 

  
(a) Finite element model (b) Bridge information model (geometry) 

Fig. 12 Bridge information model retrieved from Apache Cassandra in the main server  
 

 
Fig. 13 Sensor information retrieved from Apache Cassandra in the main server 



(1) Retrieve the sensor IDs of all the accelerometers that operated during the defined period.  
(2) Retrieve the sensor data collected by the sensors identified in step (1). 
(3) Send the retrieved sensor data to the Matlab-based Subspace Identification module 

(Overschee 2012) and calculate the modal properties. 
(4) Upload the calculated modal properties to Cassandra database in the main server. 
(5) Retrieve the sensor IDs of all the thermistors that operated during the same period. 
(6) Retrieve sensor data collected by the sensors identified in step (5). 
(7) Plotting the first modal frequencies calculated in step (3) along with the temperature data 

acquired in step (6). 
The first modal frequencies computed using sensor data collected from August 2014 to February 
2015 are plotted in Fig. 14 (a) along with the temperature measurements.  

 The analysis results stored in the Apache Cassandra in the main server can be utilized for 
additional analyses. We employ Gaussian Process for Machine Learning (GPML) module in the 
local computer to predict the effect of temperature changes on the bridge’s behavior. The Gaussian 
Process Regression interface written in Python retrieves the first modal frequencies along with the 
temperature measurements from the Apache Cassandra in the main server. The retrieved data sets 
are then sent to the GPML module provided by the scikit-learn (a Python-based machine learning) 
package (Pedregosa et al. 2011). Once the GPML module completes the analysis, the prediction 
results for the first modal frequencies for different temperatures are returned. Fig. 14 (b) illustrates 
the prediction results for the natural frequencies based on the sensor data collected from August 
2014 to February 2015. The predicted first natural frequencies show the bilinear relationship 
between temperature and the frequency with the pivot at 0°C; the results are in good agreements 
with the study by O’Connor et al. (2014). 

 
4.3 Influence line analysis using sensor data and bridge model 

 
To take advantage of the integrated bridge monitoring infrastructure, we conduct influence line 

analysis, which compares bridge responses collected by the sensors with analytically computed 
response using the FE model. In this analysis, we utilize sensor data collected from a field test for 
identification of vehicle-bridge interaction (Hou et al. 2015). In the dynamic loading test, a single 

  
(a) 1st modal frequency along with temperature 

measurement (SSI module) 
(b) Prediction of 1st modal frequency according to 

change of temperature (GPML module) 
Fig. 14 Data analysis result computed by using SSI module and GPML module in local computer 



test truck instrumented with GPS sensor crosses the Telegraph Road Bridge without other traffics. 
The test truck passes the middle lane of the bridge at approximately 60 mph. The specification of 
the test truck can be found in Fig. 15 and Table 1 (Hou et al. 2015). When the test truck crosses the 
bridge, strain gauges (installed as described in Fig. 16) measure the dynamic strain response of the 
bridge (Hou et al. 2015), and the collected data sets are stored in the Apache Cassandra in the main 
server. On the other hand, the corresponding vehicle load and vehicle lane are defined in the FE 
model of the Telegraph Road Bridge (as shown in Fig. 17) for the simulation. The FE model is 
then sent to the Apache Cassandra in the main server. 

 
 
 
 
 

  
(a) Plan view (b) Section view 

Fig. 16 Location of strain gauges 

 
Fig. 15 Test truck dimension (Hou et al. 2015) 

Table 1 Test truck load description (unit: pound) (Hou et al. 2015) 
Steer Axle Drive Axle Trailer Lead Axle Trailer Rear Axle Total 

 9,460 17,620 17,820 17,600 62,500 



 
 

Once all the necessary data are stored in the main server, we plot the influence lines for sensor 
data by retrieving the collected sensor data and plotting the strain response along with the truck 
location. Next, we download the FE model from the server and conduct static and dynamic FE 
analysis to compute the influence line for the sensor locations. Regarding the FE analysis, direct 
integration method (Hilber-Hughes-Taylor method) without damping is employed, and 0.03 
second is selected for the time step for the integration. Furthermore, since strain cannot be directly 
obtained from analysis results of CSI Bridge, we calculate the strain indirectly using the stress 
response obtained from the analysis. Finally, we compare the measured response and analytical 
response of the bridge by overlaying the obtained influence lines. Fig. 18 (a), (b), (c), and (d) show 
the overlays of the influence lines at a sensor location (channel 0), respectively. The results show 
that the measured response is very similar with the analytical response, although the analytical 
response shows slightly higher maximum response than the measured response. 
 

 
(a) Vehicle load configuration 

  
(b) Defined vehicle lane (c) Visualized test truck model 

Fig. 17 Test truck defined in FE model (CSI Bridge (2015)) 

 
5. Summary and Discussions 

 
In this study, a cyber infrastructure for bridge monitoring applications based on state-of-the-art 

data management technologies is developed. First, we investigate the bridge monitoring 
framework and define the data requirements including flexibility, scalability and query 
performance. Based on the data requirements, Apache Cassandra and MongoDB are selected as the 
backend database systems of the cyber bridge monitoring framework. Apache Cassandra is a 
column family database that is suitable for large-scale distributed database, while MongoDB is a 
document oriented database that has advantages on the schema-less data structure and fast 
performance. In addition, standardized modelling languages such as OpenBrIM and SensorML are 
employed to handle unstructured data and to support interoperability. 



 In the current proposed data management system, the monitoring system architecture consists 
of onsite computer, main server, local computer, and mobile interface. Data schemas for sensor 
data, sensor information and bridge information model are designed to facilitate system 
automation and to improve data management performance. The data schema for sensor data of 
MongoDB is defined using hierarchical data structure for ease of data access. On the other hand, 
the data schema for sensor data of Apache Cassandra is defined using time-series data modelling 
scheme to guarantee desirable performance for time-series data. The data schemas for bridge 
information model and sensor information are defined based on OpenBrIM and SensorML 
standards, respectively. In addition, we have developed interface programs to better support the 
automation and integration of the system. 

The data management system is validated using the sensor data collected from the Telegraph 
Road Bridge along with the bridge model and sensor information of the bridge. Results show that 
the proposed cyber bridge monitoring infrastructure can handle storage and retrieval of the data 
efficiently and stably. To demonstrate the utilization of the cyber infrastructure, modal analysis 
module and machine learning modules are employed. Furthermore, we compare the influence lines 

  
(a) strain gauge at end-span of girder 6  (b) strain gauge at mid-span of girder 6 

  
(c) strain gauge at end-span of girder 2  (d) strain gauge at mid-span of girder 2 

Fig. 18 Influence line analysis result 



obtained from the sensor data and bridge information with the one obtained by analysis. The 
results show that the proposed system can help users easily query and utilize complex and large 
data for bridge monitoring applications. 
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