

A NoSQL Data Management Infrastructure for Bridge
Monitoring

Seongwoon Jeong*1, Yilan Zhang2, Sean O’Connor2, Jerome P. Lynch2,

Hoon Sohn3, and Kincho H. Law1

1Department of Civil and Environmental Engineering, Stanford University,
473 Via Ortega, Stanford, CA 94305-4020, USA

2Department of Civil and Environmental Engineering, University of Michigan,
2350 Hayward St., Ann Arbor, MI 48109-2125, USA

3Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology,
291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

(Received keep as blank , Revised keep as blank , Accepted keep as blank)

Abstract. Advances in sensor technologies have led to the instrumentation of sensor networks for bridge monitoring
and management. For a dense sensor network, enormous amount of sensor data are collected. The data need to be
managed, processed, and interpreted. Data management issues are of prime importance for a bridge management
system. This paper describes a data management infrastructure for bridge monitoring applications. Specifically,
NoSQL database systems such as MongoDB and Apache Cassandra are employed to handle time-series data as well
the unstructured bridge information model data. Standard XML-based modeling languages such as OpenBrIM and
SensorML are adopted to manage semantically meaningful data and to support interoperability. Data interoperability
and integration among different components of a bridge monitoring system that includes on-site computers, a central
server, local computing platforms, and mobile devices are illustrated. The data management framework is
demonstrated using the data collected from the wireless sensor network installed on the Telegraph Road Bridge,
Monroe, MI.

Keywords: cyber infrastructure, bridge monitoring, bridge information modeling, NoSQL database

1. Introduction

As sensor technologies mature, there have been increasing interests in the deployment of
sensors for large scale infrastructure monitoring. Many bridges are now instrumented with dense
sensor network to collect valuable information for management purposes (Jang et al. 2010, Zhou
and Yi 2013, Koh et al. 2013). The advent of wireless sensor technologies has led to significant
reduction in the installation cost of sensor network on bridge structures (Lynch and Loh 2006,
Lynch et al. 2009). Developments of advanced nondestructive evaluation technologies have
facilitated the assessment of the integrity and health of a structure by enabling the detection of the
onset of damages (Sohn et al. 2015). With the permanent installation of sensors, recent research

*Corresponding author, Graduate student, E-mail: swjeong3@stanford.edu

efforts have been attempted to extract statistically meaningful information and to apply data-driven
predictive analysis with the collected long term sensor data (Cross et al. 2013, O'Connor et al.
2014). Until now, structural health monitoring research efforts have been mostly focused on the
developments of new sensor technologies and data analysis techniques. Very little efforts have
been devoted to deal with the fundamental issues of data management. The data issues need to be
dealt with properly in order to facilitate long term lifecycle bridge monitoring and management.

Information models and interoperability standards have been proposed to support data
management platform in various engineering disciplines (Ray 2002, Cheng et al. 2010). In the
building and construction domains, building information modeling (BIM) has been widely
employed to support integrated project delivery process and data exchange (Eastman et al. 2011).
The development of BIM standard has enabled software to support data exchange among different
application platforms. Research efforts have also been initiated towards developing bridge
information modeling (BrIM) standards for bridge structures (Chen and Shirolé 2006, Shirolé et al.
2008, Samec et al. 2014). Current BrIM efforts focus primarily on the geometric information and
material properties (Karaman et al. 2013, Ali et al. 2014). Standard markup language, such as
XML, is employed as the modeling language to facilitate data interoperability. In order to be useful
for comprehensive bridge lifecycle management, BrIM needs to be extended to include
descriptions of sensor data and integrated with a bridge monitoring system.

One conventional approach to handle sensor data in structural monitoring applications is to
employ traditional relational database management systems (RDBMS). The key advantages of
RDBMSs are their reliability, convenient query language, and the extensive user base. For
example, Smarsly et al. (2013) have proposed a cyber infrastructure for wind turbine monitoring
using MySQL database, and Li et al. (2006) have utilized SQL Server 2000 for health monitoring
system for the Shandong Binzhou Yellow River highway bridge. However, recent studies have
identified the limitations of RDBMSs, in particular, for the scalability and flexibility issues (Hecht
and Jablonski 2011, Han et al. 2011, Padhy et al. 2011). With the amount of data collected from a
dense sensor array, using RDBMS as a backend database for a bridge monitoring system is neither
efficient nor desirable. Furthermore, the basic data structure for schema representation in RDBMS
as tables is inefficient to handle the BrIM and XML-based schemas, which typically involve
hierarchical and unstructured data structure.

Advances in cyber physical systems and cloud computing services share many significant
technologies that can be deployed for the management of infrastructure monitoring data. Cloud
computing can be broadly defined as a utility over a network model that has emerged as a cost-
effective and efficient model to enable and deliver business and engineering services (Law et al.
2016). Driven by the need for storing, managing and retrieving large online data records with
heterogeneous formats, much research have been devoted to develop non-relational database and
non-traditional file management systems. Examples of open source databases that have been
deployed by cloud service providers include Apache Cassandra, Apache H-Base and MongoDB
(Grolinger et al. 2013). These non-traditional database systems are noted as NoSQL (Not only
SQL) database systems which are designed to handle unstructured data, which are the types of data
commonly found in engineering models and structural monitoring systems. Recent studies have
shown that NoSQL database systems have significant advantages over RDBMS in terms of
flexibility and scalability (Hecht and Jablonski 2011, Han et al. 2011, Padhy et al. 2011). For
example, Le et al. (2014) proposed an Internet of Things (IoT) platform to handle the data
collected by sensors and concluded that NoSQL database systems, such as Apache Cassandra,
consistently have better performance than relational database systems for handling and managing

sensor data. Furthermore, NoSQL database systems have been shown to have better scalability in
handling massive IoT data and have better query performance for sensor network data (Li et al.
2012, Thantriwatte and Keppetiyagama 2011)

This study investigates a NoSQL data management framework which is designed for bridge
monitoring applications. The system is designed not only to support the management of bridge
monitoring data but also to facilitate data utilization by engineering design and analysis platforms.
Based on the needs of the data management framework, Apache Cassandra and MongoDB are
selected as the backend database systems to support pertinent data archiving and efficient querying.
For interoperability purpose, we adopt OpenBrIM 2.0 (an open source XML based BrIM schema)
to represent the bridge information and SensorML (a standard for sensor and IoT applications) to
describe sensor information. In addition, software tools and interfaces are developed to support
automated data flow and to enhance data interoperability. To demonstrate software integration,
external analysis modules such as structural analysis and machine learning modules are employed.
Lastly, a mobile interface is developed to allow users to easily access information stored in the
database and to retrieve meaningful information from the server. The NoSQL database
management system is demonstrated using the bridge information model and the monitoring data
of the Telegraph Road Bridge (TRB) in Monroe, Michigan.

2. Selection of data management tools

This section discusses a sensor data management framework and the selection of data standards
and the data management tools. There exist many NoSQL database systems, each has its own
strengths and disadvantages. Careful evaluation of the tools is necessary for successful
development of a data management system. Furthermore, use of standard modeling languages to
store the metadata is important to facilitate interoperability of managed information. In this section,
we first describe the overall data management system infrastructure for bridge monitoring
applications. NoSQL database tools are then selected based on the defined requirements. Lastly,
open standards for bridge information modeling and engineering applications are introduced to
store the metadata of the system.

2.1 Sensor data management system framework

There have been few research efforts focusing on the data management infrastructure for

structural monitoring (McNeill 2009, Zhang et al. 2012, Smarsly et al. 2013, Law et al. 2014). As
shown in Fig. 1, a typical data management system for infrastructure monitoring consists of four
main components: (1) onsite computers, (2) main (data repository) server, (3) local (desktop)
computers, (4) and web or mobile user interfaces. The role for each of the components can be
described as follows:

• An onsite computer is an autonomous in situ system that stores sensor data temporarily and
serves as a buffer between the sensor network and the main server. If necessary, the onsite
computer also performs pre-process of raw data or simple analysis. Once the measured sensor
data is transmitted from the sensor network installed on bridge structure, the onsite computer
stores the data to its file or data management system and sends the data to the main server.
• The main server plays a pivotal role for a bridge monitoring system: the main server not
only persistently stores all the sensor data, the analysis results, and other metadata including

bridge information model and sensor information, but also allows local desktop computers or
end-users to easily access the database and to retrieve the data. Therefore, the main server
needs to adopt a database system which is scalable and flexible to handle the amount of the
data which are continuously acquired from the sensor network. Furthermore, the system should
adhere to the standard data structure commonly used to represent engineering models and
sensor data and to facilitate easy data exchange and utilization.
• A local (desktop) computer serves as a computing platform that engineers employ to carry
out the computational tasks involved in the bridge monitoring and management system. While
the role of the main server is to maintain its desirable performance and stability as a centralized
data archive, a local desktop computing platform periodically retrieves sensor data along with
relevant metadata from the server, performs analysis, and sends the analysis results back to the
main server.
• Finally, a user interface allows the mobile users or engineers direct, real time access to the
computational tools as well as the in-situ information at the bridge site a via web-interface or a
mobile device.
According to the data requirements, the main data server will potentially handle significant

amount of data records, which are not necessarily homogeneous or of the same data types.
Therefore, the backend database for the main server should primarily focus on flexibility and
scalability that would allow long term data archival and extendibility that will support multi-tier
service developments. On the other hand, an onsite computer or a local desktop computer only
needs to temporarily store a limited amount of data. Therefore, the focuses of the database system
for an onsite or a local desktop computer are not necessarily related to the long-term archiving of
large amount of data, but should be on efficient data retrieval to support data parsing and analysis.

2.2 Selection of NoSQL database tools

There are many existing NoSQL database systems with different features and properties. Since

NoSQL database tools have been developed to support specific data types required by the
applications, selecting an appropriate database tool for specific application is very important for
successful deployment of data management system (Hecht and Jablonski 2011). Based on the data
types, current NoSQL database tools can be categorized into column family stores, document-
oriented stores, key-value stores, and graph databases (Hecht and Jablonski 2011, Han et al. 2011,
Padhy et al. 2011).

• The column family databases have the advantages for large scale distributed data storage.

Fig. 1 Data management system for infrastructure monitoring

• The document oriented databases support schema-less data structure and powerful query
performance for heterogeneous data format.
• The key-value stores show very fast read and write speed utilizing in-memory operation.
• A graph database is optimized to manage data records that can be represented as a graph
data structure.

In this study, we employ Apache Cassandra, a column family database to satisfy the data
requirement of the main server, and MongoDB, a document oriented database to satisfy the data
requirement of the onsite computer and the local computer. Key-value stores, while suitable for
efficient data retrieval, are ruled out in this study, because of their limited data capacity. Lastly, the
data schemas, to be described in the latter section, do not lend themselves suitable for the graph
database.

2.2.1 Apache Cassandra: Database system for supporting persistent archiving

Apache Cassandra database, one of the most popular column family data storage systems, has

been developed and utilized to support large scale management and data processing systems
(Hewitt 2010, Hecht and Jablonski 2011). The fundamental data structure of Apache Cassandra
consists of key space, column family, row, and key-value pairs. Although Apache Cassandra does
not support all the functionalities of RDBMSs, Apache Cassandra is able to handle many of the
emergent big data issues. For example, Apache Cassandra database system shows not only
consistent performance regardless of the size of the data, but also fast performance based on hash
algorithm and efficient write operation (Hewitt 2010, Hecht and Jablonski 2011, Le et al. 2014).
Moreover, the system is highly available by guaranteeing failure at any single point would not
cause total system failure (Hewitt 2010). On the other hand, Apache Cassandra currently supports
only limited query and data aggregation.

Furthermore, the flexible data schema of Apache Cassandra has the advantages on storing
heterogeneous data by allowing different attribute sets for different rows (Hewitt 2010). In the
bridge monitoring applications, bridge metadata such as bridge information model and sensor
information usually involves hierarchical and heterogeneous data, respectively. The flexible data
schema feature of Apache Cassandra is particularly useful for managing metadata for bridge
monitoring. As an example, in the building and construction application, Cheng and Das (2013)
have implemented the BIM-PDE server using Apache Cassandra.

Because of availability, scalability and schema flexibility, many organizations have shifted to
Cassandra NoSQL database system to manage high volume of data (read and write) transactions
(Branson 2014, Datastax 2011, Datastax 2012). In this study, we employ Apache Cassandra to
support long term data archival and system extendibility in the main server.

2.2.2 MongoDB: Database system for supporting efficient data retrieval

MongoDB is another popular document oriented database systems designed for schema-less

data structure with high performance and scalability. The data structure of MongoDB consists of
the database, collection, and binary JSON (BSON) schema-less documents (Chodorow 2013). The
JSON document enables easy change or extension of the data model and human-understandable
data structure such as object-oriented data format. MongoDB also has the advantages on
representing complex data structure by enabling relationships between documents and supporting
hierarchical data structure. Moreover, MongoDB dramatically improves read and write

performances at the cost of join operation and transactions (Chodorow 2013). Although MongoDB
does not support some of query and aggregation functions of RDBMSs, it still supports a rich set
of query operations including indexing, range query, and aggregation operations. With the flexible
schema and high performance, MongoDB is particularly suitable when expensive queries and
transactions are not required.

Based on its flexibility, performance and scalability, MongoDB has been widely used in many
fields including Internet of Things (IoT) applications and real-time analysis (Chodorow 2013,
Hows et al. 2014). To support flexible data schema and high query performance, the database
management system for bridge management employs MongoDB for onsite computers and local
engineers’ desktop computers.

2.3 Selection of standardized modeling language

Information models and interoperability standards have been proposed as a means to support

integrated project delivery process and lifecycle management in engineering domain. By adhering
to the data exchange standard, information models can be translated into different file formats for
different applications in a seamless manner, which can reduce work loads and human errors on
manual file conversion (Eastman et al. 2011, Bernstein et al. 2012). There have been several
research efforts to develop information modeling standards for bridge engineering applications
(Chen and Shirolé 2006, Shirolé et al. 2008, Karaman et al. 2013, Ali et al. 2014). To facilitate
interoperability, semantically meaningful languages, such as extensible markup languages (such as
XML), are employed to represent the bridge model. Research efforts have also been attempted to
integrate bridge management information to bridge information models (Marzouk and Hisham
2011, Samec et al. 2014), and these efforts show great potentials of Bridge Information Modeling
to better support integrated data management for bridge monitoring.

In this study, we utilize the open-source XML-based OpenBrIM data schema to represent the
bridge model and the relevant information (Chen 2013). OpenBrIM describes a bridge information
model as a set of hierarchical objects, where an object contains information such as coordinates or
material properties. OpenBrIM also allows users to define template element for parametric design.
Although the BrIM model written in XML usually involves complex data structures, which are not
easy to manage using traditional RDBMS, the flexible data schema of NoSQL database systems
can elegantly handle the complex BrIM data.

While the current OpenBrIM schema can describe the basic elements of bridge information
model, it lacks essential elements for bridge monitoring and management applications such as
sensor metadata and analytical model information. Therefore, we need to supplement the database
system with additional components, so that the system can manage the necessary information for
bridge monitoring. To achieve this goal, we adopt Sensor Model Language (SensorML), a standard
for defining measurement and post-measurement processes proposed by the Open Geospatial
Consortium (OGC), to store the sensor information in the main server (Open Geospatial
Consortium, 2014). SensorML is written in XML, and it provides extensive metadata for storing
sensor information. In addition, we also investigate the data schema of CSI Bridge (2015) to add
analytical model information to the data management system. Fig. 2 illustrates the overall data
management framework reflecting the selected database tools and standard modeling languages.

3. Infrastructure system for bridge monitoring

This section describes the detailed architectural design for the bridge monitoring system based
on NoSQL database tools. Data schema and interface software are developed to facilitate data
utilization and data integration. We also employ several programming libraries to support remote
connection to the NoSQL database systems as well as seamless data flow. In this section, first, data
schema descriptions for sensor data, bridge information model, and sensor information are
described. We then focus our discussion on the architecture of the proposed system and its
individual components.

3.1 Data schema description

An appropriate data schema can significantly facilitate system automation and improve data

management efficiency. It should be noted that with NoSQL database, the defined data schema can
be easily revised and scaled according to user needs. There are three basic types of data in the
monitoring system: sensor data, sensor information, and bridge information model. The analysis
results can share the same schema for the sensor data. In the proposed system framework,
MongoDB installed on an onsite computer and a local computer requires data schema for the

Fig. 2 Data management framework based on NoSQL database

sensor data, while Apache Cassandra requires data schema for sensor information and bridge
information model in addition to the sensor data. The standard modeling languages such as
OpenBrIM and SensorML are employed to define the data schema for interoperability.

3.1.1 Sensor data (MongoDB)

Fig. 3 describes the data schema for sensor data defined for MongoDB. In the current

implementation, the database is named after the bridge structure. In addition, we use a single
collection named repos to manage the sensor data. We take advantage of MongoDB’s hierarchical
data structure to categorize sensor data for ease of data retrieval (Jeong et al. 2015b). The root
node for a single data acquisition (DAQ), named daqevent, contains the timestamp of the DAQ
event. The non-leaf nodes, named group and sensor, not only categorize sensor data according to
user defined sensor group and sensor id/channel, but also provide metadata of DAQ such as
sampling rate. The leaf document named sensordata collects a list of measured data over a certain
time period along with the timestamp. Currently, the interface program is tuned to allow each
document to store the sensor data measured over a period of one second (Jeong et al. 2015a). For
example, if the sampling rate of a sensor is 5Hz, then the measured data is discretized into buckets
where each bucket has five consecutive data and is stored in a single sensordata document. Since
the upper limit of data size of a document is 16MB, this discretization strategy is required to
prevent exceeding the maximum data size which can be caused by sensors that have high sampling
rate (Jeong et al. 2015a).

3.1.2 Sensor data (Apache Cassandra)

Fig. 4 shows the data schema defined for sensor data in Apache Cassandra. In the current

implementation, the key space is named after the bridge structure, and the column family is named
sensordata. While the consistent hashing algorithm of Apache Cassandra has great advantages on
managing big data with distributed computing nodes, the partitioning strategy could deteriorate the
query performance for sequential data by distributing them to different physical locations. To deal
with this problem, we implement a time-series data modeling scheme for Apache Cassandra

Fig. 3 Data schema of sensor data on MongoDB

(McFadin 2015). As shown in Fig. 4, the row key is defined according to the sensor id and the year
and month of timestamp in the form of sensorID|yyyymm. Furthermore, the timestamp of the
sensor data is used for the name of a column, while the corresponding sensor data is used for the
value of the column. With this time-series modeling scheme, the time-series data can be stored
sequentially to disk in sorted order, thereby enhancing range query efficiency. Currently, the
interface program is tuned to make each column to store up to one second of time-series data
acquired by a single sensor channel.

3.1.3 Sensor information

The main server also manages the sensor information such as sensor id, sampling rate, and

output type, and allows user to utilize those information by different applications including data
analysis and management of sensor. For interoperability, we implement SensorML, a standard for
IoT applications, and define a list of metadata for bridge monitoring applications (Open Geospatial
Consortium 2014). To manage sensor information, a column family named sensorinformation is
prepared in Apache Cassandra. Fig. 5 illustrates the data schema defined for the sensor data. A
single row is assigned to store a single sensor’s metadata. The primary key that uniquely identifies
a sensor consists of the sensor id and the installation date of the sensor, since there could be
different sensors sharing the same sensor id over time. In addition, index is defined on the output
of a sensor (e.g. strain, acceleration, and temperature), since same type of sensors are often utilized
together. Although the sensor information is typically heterogeneous, the flexible data schema of
Apache Cassandra can handle the unstructured information elegantly. For example, the sensor

Fig. 4 Data schema of sensor data on Apache Cassandra

Fig. 5 Data schema of sensor information on Apache Cassandra

information of u42ch0 in Fig. 5 contains incomplete data set due to the lack of output_uom entity.
While traditional relational database systems enforce identical set of attributes to every single row,
the flexible data schema of Cassandra allows different attribute set for each row, and thus,
elegantly handles incomplete data sets that do not contain all the components defined by
SensorML (Hecht and Jablonski 2011, Hewitt 2010).

3.1.4 Bridge information model

Bridge information model repository in the main server stores all the information about a

bridge structure including, but not limited to, geometric and analytic model information. For
example, an element in a bridge information model includes not only the detailed coordinate
information (geometric information), but also the connectivity and load information (analytic
model information). This study employs OpenBrIM 2.0 schema by Chen et al (2013) as the basis
for the data schema representing the bridge information model. OpenBrIM uses XML as the
language-neutral data format to facilitate data exchange and improve interoperability. Since the
OpenBrIM lacks schema for analytical model, we investigate the data schema of CSI Bridge
(2015), a finite element (FE) analysis program, and extracts the important elements that are needed
for structural analysis.

Fig. 6 shows the data schema for BrIM repository in the Apache Cassandra database. Bridge
information model data is stored in a column family named bridgeinformation. Most of the rows in
the column family represent a unit element of the bridge information model, and their row keys are
defined according to the id of the elements. Each row stores the element’s attributes such as
geometry and nodal connectivity in separate columns. The value of each column is a XML string
containing appropriate information based on OpenBrIM schema. Some special rows contain
general information for FE analysis including node information, material properties, and load
information. Although a bridge information model usually involves objects that may have different
attributes-value pairs, their heterogeneous object sets can be handled rather flexibly within a single
column family with Apache Cassandra (instead of using multiple relational tables) (Hewitt 2010).

3.2 System architecture

Fig. 6 Data schema of bridge information model on Apache Cassandra

Fig. 7 shows the overall architecture of the bridge monitoring system. As described in Section 2,
the system consists of four major components including onsite computers, main server, local
computers, and user interfaces. Interface software tools are developed to support many functions
including data processing, network handling, and connection to the database systems. In addition,
the interface software for each component is developed to enable seamless data flow. Various
Application Programming Interface (API) tools are available for implementation. For example,
MongoDB provides APIs supporting many programming languages to help the users to easily
utilize the database system. Similarly, Apache Cassandra provides convenient APIs as well as a
Cassandra Query Language (CQL), which is very similar to the structured query language (SQL).
In this study, Python is chosen as the primary programming language to implement the functions
needed for the proposed system including data processing and data transmission.

3.2.1 Onsite computer

An onsite computer receives the sensor data from sensor network, stores the data in MongoDB,

and sends the data to the Apache Cassandra database in the main server. For this study, we employ
an older version of MongoDB (version 2.0.6) since the onsite computers and controllers installed
in some bridge monitoring and sensor network systems employ older versions of the Microsoft
operating system and do not support a recent version (version 2.2 or higher) of the MongoDB
system. Two interface programs written in Python are developed to automate the data flow (Jeong
et al. 2015b). The first program, named onsite.py, is in charge of sending new sensor data to the
MongoDB’s repository. Once the new sensor data is transmitted from a sensor network, onsite.py
parses the raw sensor data into the defined data schema and is stored in the database using
PyMongo, a MongoDB API for Python.

Similarly, the second program, named tomain.py, parses the sensor data in the MongoDB into
the defined data schema for Apache Cassandra and sends the data to the main server. The
tomain.py employs an API for Apache Cassandra called Cassandra Driver. Since the in situ
condition is not necessarily stable, we implement error handlers that can handle errors due to

Fig. 7 System architecture of cyber infrastructure

unstable network connection. In addition, bridge monitoring system typically involves large
amount of sensor data, even though the network speed on site is typically slow in comparison to
the data rate. To handle a timeout error due to slow network connection, we loosen the connection
timeout constraint of Cassandra Driver. The second program also records whether a data bucket
has been successfully sent to the main server, so that we can prevent unnecessary duplicate data
transmission to the Cassandra database when the onsite system is accidently rebooted.

3.2.2 Main server

The main server serves a central data repository of the bridge monitoring system. Apache

Cassandra (version 2.0.16) is implemented as the backend database for the main server. Apache
Cassandra in the main server is designed to store mainly four kinds of data such as sensor data,
sensor information, bridge information model, and analysis result. Apache Cassandra keeps
listening to the request from onsite computers and local computers through allocated ports on the
network. Once a request from Cassandra Driver API is delivered, Apache Cassandra automatically
handles the request and sends the appropriate response back to the device. Since the size of sensor
data is usually quite large, the setting of Cassandra is tuned to use as much as memory as possible
for efficient data processing.

In addition to the Cassandra database, the main server also implements HTTP server to handle
requests from the users using BaseHTTPServer, a Python module for Internet protocol. The HTTP
server keeps listening to the user request from a user’s mobile device. Once a URL request is
received, the HTTP server parses the URL into query and parameter, retrieves relevant data from
Apache Cassandra database using Cassandra Driver, and returns the data to the user. Currently, the
HTTP server only supports simple GET requests to query sensor data and sensor information.

3.2.3 Local computer

A local computer is essentially a desktop-based computing platform that retrieves data, perform

analysis, and push the analysis results back to the Apache Cassandra in the main server. Since
some data analysis modules require very expensive computational costs, the decentralized strategy
helps the main server to be isolated from such operations and to maintain its performance as the
central data repository. To automate data flow from Apache Cassandra database in the main server
to the analysis software in the local computer, several interface programs written in Python are
developed (Jeong et al. 2015b). In addition to Cassandra Driver, we use MATLAB Engine (an
interface between MATLAB and Python), scikit-learn (a tool for machine learning in Python), and
rpy2 (an interface to R for Python process) to demonstrate a diverse set of data analysis platforms.
In addition, the local computer also employs MongoDB in case the user wants to temporarily store
the data in the local computer.

3.2.4 User interface

Development of user interface is an important task to facilitate the utilization of bridge

monitoring data for bridge management and decision making processes. In this study, we develop
a prototype iOS application using Swift 2, a programming language for iOS. This application
deploys many Swift APIs including view controller (UIViewController), button (UIButton), table
(UITableView) and map view (UIMapView). The application provides functions to retrieve sensor

data and sensor information from the main server. For example, if a user touches “sensor
information” button on the screen, the application sends a GET request to the HTTP server in the
main server using the networking API of iOS. The HTTP server then processes the request and
return relevant data to the user’s mobile device. Once the mobile device receives the data, the
application displays the retrieved sensor information as tables for viewing. Currently, the prototype
application supports simple data retrieval for sensor data and sensor information.

4. Implementation

To test the data management infrastructure, we use the sensor data sets collected from

Telegraph Road Bridge (TRB) in Monroe, Michigan (shown in Fig. 8 (a)) and its bridge model
(modelled in CSI Bridge (2015)) and sensor information (previously stored in Microsoft Excel).
The sensor network installed on the Telegraph Road Bridge consists of 14 accelerometers, 40
strain gauges, and 6 thermistors, as described by O’Connor et al. (2014, 2015). Fig. 8 (b) shows
the layout of the sensor network (O’Connor et al. 2015). The data sets include seven weeks of
sensor data: one week per month from August 2014 to February 2015. The sensor network
acquires data for a one-minute time duration on every 2 hours interval. While the accelerometers
collect the measurements at the sampling rate of 200 Hz, the sampling rate of the strain gauges and
the thermistors is set at 100 Hz.

4.1 Data management: storage and retrieval

To simulate the in situ bridge monitoring scenario, a script written in Python that periodically

sends the sensor data sets to the onsite computer. As discussed in Section 3, once the sensor data is
delivered to the onsite computer, the interface program (onsite.py) on the onsite computer
automatically re-structures the raw data according to the defined data schema for MongoDB and
stores the parsed data to MongoDB. Fig. 9 shows a screenshot of the onsite.py in operation. Once a
data set for a single data acquisition event is stored in MongoDB in the onsite computer, another

(a) Side view (b) Type and location of sensors installed on Telegraph Road

Bridge (O’Connor et al. 2015)
Fig. 8 Telegraph Road Bridge, Monroe, MI

interface program on the onsite computer (tomain.py) parses the data set stored in MongoDB to the
defined data schema for Apache Cassandra and uploads the data to the Apache Cassandra database
in the main server. Fig. 10 shows a screenshot of the tomain.py in operation. The sensor data stored
in Apache Cassandra in the main server can be retrieved using Cassandra Driver (for local
computer) or URL request (for mobile device). Fig. 11 shows an example of data retrieval for a
desired time period using a mobile device.

The bridge information model is parsed into the defined data schema and stored in the Apache
Cassandra in the main server. For storing the bridge information model, we export the FE model
into Microsoft Excel format using CSI Bridge’s exporting function. The exported model is then
converted into the defined data schema and stored in the Apache Cassandra in the main server.

Fig. 9 onsite.py: Python script storing sensor data to MongoDB in on-site computer

Fig. 10 tomain.py: Python script storing sensor data to Apache Cassandra database in main server

(a) User interface for querying (b) Retrieved sensor data

Fig. 11 Sensor data retrieved from Apache Cassandra in main server using mobile device

Once the data are stored, the bridge information model can be retrieved in different file formats.
Fig. 12 (a) and (b) show the retrieved FE model (Excel file format) visualized using CSI Bridge
(2015) and the retrieved BrIM geometry model (XML file format) visualized using the OpenBrIM
viewer, respectively. In this study, we develop and utilize Python scripts to convert, store, and
retrieve the bridge information model. Similarly, sensor information also needs to be stored in the
Apache Cassandra in the main server according to the defined data schema. To conduct this task,
we develop a Python script to parse and send the sensor information to the main server. Fig. 13
shows the sensor information retrieved using CQLSH, a command line client for Apache
Cassandra.

4.2 Data analysis using long term sensor data

To demonstrate the utilization of local computer as a computing platform (typically employed

by engineers), we employ two analysis modules: modal analysis module and machine learning
module. The implementation of these modules for the Telegraph Road Bridge has been previously
illustrated using a cyber-enabled wireless monitoring system (O’Connor et al. 2014, Zhang et al.
2016). In this study, we employ the modules by utilizing the proposed NoSQL data management
infrastructure for bridge monitoring. We utilize a Matlab-based Subspace Identification module
(Overschee 2012) to extract modal properties from the acceleration data stored in the main server.
The modal properties are computed on the local computer using the following steps (Jeong et al.
2015b):

(a) Finite element model (b) Bridge information model (geometry)

Fig. 12 Bridge information model retrieved from Apache Cassandra in the main server

Fig. 13 Sensor information retrieved from Apache Cassandra in the main server

(1) Retrieve the sensor IDs of all the accelerometers that operated during the defined period.
(2) Retrieve the sensor data collected by the sensors identified in step (1).
(3) Send the retrieved sensor data to the Matlab-based Subspace Identification module

(Overschee 2012) and calculate the modal properties.
(4) Upload the calculated modal properties to Cassandra database in the main server.
(5) Retrieve the sensor IDs of all the thermistors that operated during the same period.
(6) Retrieve sensor data collected by the sensors identified in step (5).
(7) Plotting the first modal frequencies calculated in step (3) along with the temperature data

acquired in step (6).
The first modal frequencies computed using sensor data collected from August 2014 to February
2015 are plotted in Fig. 14 (a) along with the temperature measurements.

 The analysis results stored in the Apache Cassandra in the main server can be utilized for
additional analyses. We employ Gaussian Process for Machine Learning (GPML) module in the
local computer to predict the effect of temperature changes on the bridge’s behavior. The Gaussian
Process Regression interface written in Python retrieves the first modal frequencies along with the
temperature measurements from the Apache Cassandra in the main server. The retrieved data sets
are then sent to the GPML module provided by the scikit-learn (a Python-based machine learning)
package (Pedregosa et al. 2011). Once the GPML module completes the analysis, the prediction
results for the first modal frequencies for different temperatures are returned. Fig. 14 (b) illustrates
the prediction results for the natural frequencies based on the sensor data collected from August
2014 to February 2015. The predicted first natural frequencies show the bilinear relationship
between temperature and the frequency with the pivot at 0°C; the results are in good agreements
with the study by O’Connor et al. (2014).

4.3 Influence line analysis using sensor data and bridge model

To take advantage of the integrated bridge monitoring infrastructure, we conduct influence line

analysis, which compares bridge responses collected by the sensors with analytically computed
response using the FE model. In this analysis, we utilize sensor data collected from a field test for
identification of vehicle-bridge interaction (Hou et al. 2015). In the dynamic loading test, a single

(a) 1st modal frequency along with temperature

measurement (SSI module)
(b) Prediction of 1st modal frequency according to

change of temperature (GPML module)
Fig. 14 Data analysis result computed by using SSI module and GPML module in local computer

test truck instrumented with GPS sensor crosses the Telegraph Road Bridge without other traffics.
The test truck passes the middle lane of the bridge at approximately 60 mph. The specification of
the test truck can be found in Fig. 15 and Table 1 (Hou et al. 2015). When the test truck crosses the
bridge, strain gauges (installed as described in Fig. 16) measure the dynamic strain response of the
bridge (Hou et al. 2015), and the collected data sets are stored in the Apache Cassandra in the main
server. On the other hand, the corresponding vehicle load and vehicle lane are defined in the FE
model of the Telegraph Road Bridge (as shown in Fig. 17) for the simulation. The FE model is
then sent to the Apache Cassandra in the main server.

(a) Plan view (b) Section view

Fig. 16 Location of strain gauges

Fig. 15 Test truck dimension (Hou et al. 2015)

Table 1 Test truck load description (unit: pound) (Hou et al. 2015)
Steer Axle Drive Axle Trailer Lead Axle Trailer Rear Axle Total

 9,460 17,620 17,820 17,600 62,500

Once all the necessary data are stored in the main server, we plot the influence lines for sensor
data by retrieving the collected sensor data and plotting the strain response along with the truck
location. Next, we download the FE model from the server and conduct static and dynamic FE
analysis to compute the influence line for the sensor locations. Regarding the FE analysis, direct
integration method (Hilber-Hughes-Taylor method) without damping is employed, and 0.03
second is selected for the time step for the integration. Furthermore, since strain cannot be directly
obtained from analysis results of CSI Bridge, we calculate the strain indirectly using the stress
response obtained from the analysis. Finally, we compare the measured response and analytical
response of the bridge by overlaying the obtained influence lines. Fig. 18 (a), (b), (c), and (d) show
the overlays of the influence lines at a sensor location (channel 0), respectively. The results show
that the measured response is very similar with the analytical response, although the analytical
response shows slightly higher maximum response than the measured response.

(a) Vehicle load configuration

(b) Defined vehicle lane (c) Visualized test truck model

Fig. 17 Test truck defined in FE model (CSI Bridge (2015))

5. Summary and Discussions

In this study, a cyber infrastructure for bridge monitoring applications based on state-of-the-art

data management technologies is developed. First, we investigate the bridge monitoring
framework and define the data requirements including flexibility, scalability and query
performance. Based on the data requirements, Apache Cassandra and MongoDB are selected as the
backend database systems of the cyber bridge monitoring framework. Apache Cassandra is a
column family database that is suitable for large-scale distributed database, while MongoDB is a
document oriented database that has advantages on the schema-less data structure and fast
performance. In addition, standardized modelling languages such as OpenBrIM and SensorML are
employed to handle unstructured data and to support interoperability.

 In the current proposed data management system, the monitoring system architecture consists
of onsite computer, main server, local computer, and mobile interface. Data schemas for sensor
data, sensor information and bridge information model are designed to facilitate system
automation and to improve data management performance. The data schema for sensor data of
MongoDB is defined using hierarchical data structure for ease of data access. On the other hand,
the data schema for sensor data of Apache Cassandra is defined using time-series data modelling
scheme to guarantee desirable performance for time-series data. The data schemas for bridge
information model and sensor information are defined based on OpenBrIM and SensorML
standards, respectively. In addition, we have developed interface programs to better support the
automation and integration of the system.

The data management system is validated using the sensor data collected from the Telegraph
Road Bridge along with the bridge model and sensor information of the bridge. Results show that
the proposed cyber bridge monitoring infrastructure can handle storage and retrieval of the data
efficiently and stably. To demonstrate the utilization of the cyber infrastructure, modal analysis
module and machine learning modules are employed. Furthermore, we compare the influence lines

(a) strain gauge at end-span of girder 6 (b) strain gauge at mid-span of girder 6

(c) strain gauge at end-span of girder 2 (d) strain gauge at mid-span of girder 2

Fig. 18 Influence line analysis result

obtained from the sensor data and bridge information with the one obtained by analysis. The
results show that the proposed system can help users easily query and utilize complex and large
data for bridge monitoring applications.

Acknowledgments

This research is supported by a Grant No. 13SCIPA01 from Smart Civil Infrastructure Research
Program funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government
and Korea Agency for Infrastructure Technology Advancement (KAIA). The research is also
partially supported by the US National Science Foundation (NSF), Grant No. ECCS-1446330 to
Stanford University and Grant No. CMMI-1362513 and ECCS-1446521 to the University of
Michigan. The authors thank the Michigan Department of Transportation (MDOT) for access to
the Telegraph Road Bridge and for offering support during installation of the wireless monitoring
system. Any opinions, findings, conclusions or recommendations expressed in this paper are solely
those of the authors and do not necessarily reflect the views of NSF, MOLIT, KAIA or any other
organizations and collaborators.

References

Ali, N., Chen, S. S., Srikonda, R. and Hu, H. (2014). “Development of Concrete Bridge Data Schema for

Interoperability,” Transportation Research Record, 2406(1), pp. 87-97.
Bernstein, H. M., Jones, S. A. and Russo, M. A. (2012)., “The business value of BIM in North America:

multi-year trend analysis and user ratings (2007-2012)”, SmartMarket Report, McGraw-Hill Construction,
Bedford, MA.

Branson, R. (2014). “Facebook’s Instagram: Making the switch to Cassandra from Redis, a 75% ‘Insta’
savings,” [Online article], Retrieved from: http://planetcassandra.org/blog/interview/facebooks-instagram-
making-the-switch-to-cassandra-from-redis-a-75-insta-savings/ (accessed on 16 Dec 2015)

Chen S. S. (2013). “Bridge Data Protocols for Interoperability Local Failure Bridge Data Protocols for
Interoperability and Life Cycle Management,” [Online article], Retrieved from:
http://iug.buildingsmart.org/resources/itm-and-iug-meetings-2013-munich/infra-room/bridge-data-
protocols-for-interoperability-and-life-cycle-management (accessed on 16 Dec 2015)

Chen, S. S. and Shirolé, A. M. (2006). “Integration of information and automation technologies in bridge
engineering and management: Extending the state of the art,” Transportation Research Record, 1976(1),
pp. 3-12.

Cheng, J. C. P. and Das, M. (2013). “A cloud computing approach to partial exchange of BIM models,”
Proceedings of the 30th CIB W78 International Conference, pp. 9-12.

Cheng, J. C. P., Law, K.H., Bjornsson, H., Jones, A. and Sriram, R. (2010). “A service oriented framework
for construction supply chain integration,” Automation in Construction, 19(2), pp. 245-260.

Chodorow, K. (2013). “MongoDB: the definitive guide”, O'Reilly Media, Inc., [Online book], Retrieved
from: http://proquest.safaribooksonline.com/9781449381578?uicode=stanford (accessed on 16 Dec 2015)

Cross, E. J., Koo, K. Y., Brownjohn, J. M. W. and Worden, K. (2013). “Long-term monitoring and data
analysis of the Tamar Bridge,” Mechanical Systems and Signal Processing, 35(1-2), pp. 16-34.

Datastax (2011). “Netflix gives users exactly what they want – every time,” [Online article], Retrieved from:
http://www.datastax.com/wp-content/uploads/2011/09/CS-Netflix.pdf (accessed on 16 Dec 2015)

Datastax (2012). “eBay engages customers with personalized recommendations,” [Online article], Retrieved
from: http://www.datastax.com/wp-content/uploads/2012/12/DataStax-CS-eBay.pdf (accessed on 16 Dec
2015)

Eastman, C., Teicholz, P., Sacks, R. and Liston, K. (2011). “BIM handbook: a guide to building information
modeling for owners, managers, designers, engineers, and contractors,” John Wiley & Sons, Inc.,

Hoboken, NJ.
Grolinger, K., Higashino, W. A., Tiwari, A. and Capretz, M. A. (2013). “Data management in cloud

environments: NoSQL and NewSQL data stores,” Journal of Cloud Computing: Advances, Systems and
Applications, 2(1), 22.

Han, J., Haihong, E., Le, G. and Du, J. (2011). “Survey on NoSQL database,” Proceedings of ICPCA 2011,
pp. 363-366.

Hecht, R. and Jablonski, S. (2011). “NoSQL Evaluation: A use case oriented survey,” Proceedings of CSC
2011, pp. 336-341.

Hewitt, E. (2010) “Cassandra: the definitive guide,” O'Reilly Media, Inc., [Safari Book Online], Retrieved
from: http://proquest.safaribooksonline.com/9781449399764 (accessed on 16 Dec 2015)

Hou, R., Zhang, Y., O’Connor, S., Hong, Y. and Lynch, J. P. (2015). “Monitoring and Identification of
Vehicle-Bridge Interaction using Mobile Truck-based Wireless Sensors,” Proceedings of 11th
International Workshop on Advanced Smart Materials and Smart Structures Technology, August 1-2,
2015, University of Illinois, Urbana-Champaign, United States.

Hows, D., Membrey, P. and Plugge, E. (2014). “MongoDB Basics,” Apress. [Online book], Retrieved from:
http://link.springer.com/book/10.1007%2F978-1-4842-0895-3 (accessed on 20 Dec 2015)

Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J. A., Sim, S., Jung, H., Yun, C., Spencer, Jr., B. F. and Agha,
G. (2010). “Structural health monitoring of a cable-stayed bridge using smart sensor technology:
deployment and evaluation,” Smart Structures and Systems, 6(5-6), pp. 439-459.

Jeong, S., Byun, J., Kim, D., Sohn, H., Bae, I. H. and Law, K. H. (2015a). “A data management
infrastructure for bridge monitoring”, Proceedings of the SPIE Smart Structures/NDE Conference, art no.
94350P.

Jeong, S., Zhang, Y., Lynch, J., Sohn, H. and LAW, K. H. (2015b). “A NoSQL-based Data Management
Infrastructure for Bridge Monitoring Database,” Proceedings of Structural Health Monitoring 2015
(IWSHM 2015), Stanford University, Stanford, CA, USA, September 1-3, 2015.

Karaman, S. G., Chen, S. S. and Ratnagaran, B. J. (2013). “Three-Dimensional Parametric Data Exchange
for Curved Steel Bridges,” Transportation Research Record, 2331(1), pp. 27-34.

Koh, H., Park, W. and Kim, H. (2013). “Recent activities on operational monitoring of long-span bridges in
Korea,” Proceedings of SHMII 2013, pp. 66-82.

Law, K.H., Cheng, J.C.P., Fruchter, R. and Sriram, R. (2016). “Cloud applications in engineering,” In
Encyclopedia of Cloud Computing, Murugesan, S. and Bojanova, I. (Eds.), Wiley. (in press).

Law, K. H., Smarsly, K. and Wang, Y. (2014). “Sensor data management technologies for infrastructure
asset management,” In Sensor Technologies for Civil Infrastructures: Applications in Structural Health
Monitoring, Wang, M. L., Lynch, J. P., and Sohn, H. (Eds.), Woodhead Publishing, Cambridge, UK, 2(1),
pp. 3-32.

Le, T. D., Kim, S. H., Nguyen, M. H., Kim, D., Shin, S. Y., Lee, K. E. and da Rosa Righi, R. (2014). “EPC
information services with No-SQL datastore for the Internet of Things,” Proceedings of IEEE RFID 2014,
pp. 47-54.

Li, H., Ou, J., Zhao, X., Zhou, W., Li, H., Zhou, Z. and Yang, Y. (2006). “Structural health monitoring
system for the Shandong Binzhou Yellow River Highway Bridge,” Computer-Aided Civil and
Infrastructure Engineering, 21(4), pp. 306-317.

Li, T., Liu, Y., Tian, Y., Shen, S., and Mao, W. (2012). “A storage solution for massive IoT data based on
NoSQL,” In 2012 IEEE International Conference on Green Computing and Communications, pp. 50-57.

Lynch, J. P., Kamat, V., Li, V. C., Flynn, M., Sylvester, D., Najafi, K., Gordon, T., Lepech, M., Emami-
Naeini, A., Krimotat, A., Ettouney, M., Alampalli, S. and Ozdemir, T. (2009). “Overview of a cyber-
enabled wireless monitoring system for the protection and management of critical infrastructure systems,”
Proceedings of SPIE - The International Society for Optical Engineering, 7294, art no. 72940L.

Lynch, J. P. and Loh, K. J. (2006). “A summary review of wireless sensors and sensor networks for
structural health monitoring,” Shock and Vibration Digest, 38(2), pp. 91-130.

Marzouk, M. M. and Hisham, M. (2011). “Bridge information modeling in sustainable bridge management,”
Proceedings of ICSDC 2011, pp. 457-466.

McFadin, P. (2015). “Getting Started with Time Series Data Modeling,” [Online article], Retrieved from:
https://academy.datastax.com/demos/getting-started-time-series-data-modeling (accessed on 16 Dec 2015)

McNeill, D.K., “Data management and signal processing for structural health monitoring of civil
infrastructure systems,” In Structural Health Monitoring of Civil Infrastructure Systems, Karbhari, V. M.
and Ansari, F. (Eds.), CRC Press, Boca Raton, FL, pp. 283-304.

O'Connor, S. M., Zhang, Y., Lynch, J., Ettouney, M. and van der Linden, G. (2014). “Automated analysis of
long-term bridge behavior and health using a cyber-enabled wireless monitoring system,” Proceedings of
SPIE - The International Society for Optical Engineering, 9063, art. no. 90630Y.

O'Connor, S. M., Zhang, Y. and Lynch, J. P. (2015). “Automated outlier detection framework for identifying
damage states in multi-girder steel bridges using long-term wireless monitoring data,” , Proceedings of
the SPIE Smart Structures/NDE Conference, art no. 94370N.

Open Geospatial Consortium (2014). “OGC® SensorML: Model and XML Encoding Standard” [online
article], Retrieved from: http://www.opengeospatial.org/standards/sensorml (accessed on 16 Dec 2015)

Overschee, P. V. (2002). “Subspace Identification for Linear Systems,” [Matlab package]. Retrieved from:
http://www.mathworks.com/matlabcentral/fileexchange/2290-subspace-identification-for-linear-systems
(accessed on 16 Dec 2015)

Padhy, R. P., Patra, M. R. and Satapathy, S. C. (2011). “RDBMS to NoSQL: Reviewing some next-
generation non-relational databases,” International Journal of Advanced Engineering Science and
Technologies, 11(1), pp. 15-30.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V. and Vanderplas, J. (2011). “Scikit-learn: Machine learning in Python,” The
Journal of Machine Learning Research, 12, pp. 2825-2830.

Ray, S. (2002). Interoperability standards in the semantic web. Journal of Computing in Information Science
and Engineering, ASME, 2, pp. 65-69.

Samec, V., Stamper, J., Sorsky, H. and Gilmore, T. W. (2014). “Long span suspension bridges – bridge
information modeling,” Proceedings of IABMAS 2014, pp. 1005-1010.

Shirolé, A. M., Chen, S. S. and Puckett, J. A. (2008). “Bridge Information Modeling for the Life Cycle:
Progress and Challenges,” Proceedings of IBSMC08-025, pp. 313-323.

Smarsly, K., Law, K. H. and Hartmann, D. (2013). “A cyberinfrastructure for integrated monitoring and life-
cycle management of wind turbines,” Proceedings of EG-ICE 2013, 6(30).

Sohn, H., Lim, H. J. and Yang, S. (2015). “A Fatigue Crack Detection Methodology”, Smart Sensors for
Health and Environment Monitoring - Springer, KAIST, pp. 233-253.

Thantriwatte, T. A. M. C., and Keppetiyagama, C. I. (2011). “NoSQL query processing system for wireless
ad-hoc and sensor networks,” Proceedings of International Conference on Advances in ICT for Emerging
Regions, ICTer 2011, art. no. 6075030, pp. 78-82.

Zhang, Y., Kurata, M., Lynch, J. P., Van der Linden, G., Sederat, H. and Prakash, A. (2012). “Distributed
cyberinfrastructure tools for automated data processing of structural monitoring data,” Proceedings of
SPIE - The International Society for Optical Engineering, 8347, art no. 83471Y.

Zhang, Y., O’Connor, S., van der Linden, G., Prakash, A., and Lynch, J. (2016). “SenStore: A Scalable
Cyberinfrastructure Platform for Implementation of Data-to-Decision Frameworks for Infrastructure
Health Management,” Journal of Computing in Civil Engineering, 10.1061/(ASCE)CP.1943-
5487.0000560 , 04016012.

Zhou, G. D. and Yi, T. H. (2013). “Recent developments on wireless sensor networks technology for bridge
health monitoring,” Mathematical Problems in Engineering, 947867.

