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ABSTRACT 
For each industry, there exist many taxonomies that are intended 
for various applications.  There are also multiple sources of 
regulations from different government agencies.  Industry 
practitioners, unlike legal practitioners, are familiar with one or 
more industry-specific taxonomies but not necessarily regulatory 
organization systems.  To help browsing of regulations by 
industry practitioners, we propose to map regulations to existing 
industry-specific taxonomies. 

A mapping from a single taxonomy to a single regulation is a 
trivial keyword matching task.  From there, we examine 
techniques to map a single taxonomy to multiple regulations, as 
well as to map multiple taxonomies to a single regulation.  Cosine 
similarity, Jaccard coefficient and market-basket analysis are 
tested to model the similarity metric between concepts from 
different taxonomies.  Preliminary evaluations of the three metrics 
are performed.  Examples from the building industry are drawn to 
illustrate the betterment of regulatory usage from the mapping 
between various taxonomies and regulations. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – retrieval models, I.2.1 [Artificial Intelligence]: 
Applications and Expert Systems – law. 

Keywords 
Heterogeneous Ontologies, Taxonomy Interoperability, 
Relatedness Analysis, Regulation Retrieval. 

1. INTRODUCTION 
Government regulations are an important asset of the society.  
They extend the laws governing the country with specific 
guidance for corporate and public actions.  Ideally regulations 
should be readily retrievable by interested individuals.  To aid 
understanding of the law, much prior research focused on the 
abstraction and retrieval of case law [1, 3, 5, 24], analysis of 
regulations [15, 16], and compliance guidance for regulations [12, 
13].  Methodologies and tools that enable the browsing of 

regulations according to industry-specific taxonomies are 
relatively lacking. 

Regulations, like most government information, are organized 
according to the classification system of the agency rather than 
the mental models of users [6].  There is a clear need and benefit 
of traversing regulations using existing industry taxonomies.  For 
instance, in the architectural, engineering and construction (AEC) 
domain, there are a few ontologies that describe the semantics of 
building models, such as the CIMsteel Integration Standards 
(CIS/2) [7] , the Industry Foundation Classes (IFC) [10], and the 
OmniClass construction classification system (OmniClass, see 
Figure 1) [22].  These ontologies are all targeted towards the same 
user group, namely the AEC practitioners, but the structures, 
vocabularies and coverage differ depending on the application.  
Most AEC practitioners are familiar with the terms and 
vocabulary in these ontologies - for them to browse through 
regulations for compliance requirements, adhering to an existing 
taxonomy that they are familiar with minimizes learning of new 
classification and vocabularies.  Their mental models are better 
represented using existing taxonomies rather than agency’s 
classification for regulations. 

In this paper, we present a systematic approach to mapping 
regulations to industry-specific taxonomies.  We begin with 
linking one taxonomy to one regulation which is a trivial keyword 
extraction task.  Extending one taxonomy to multiple regulations 
requires clustering of relevant sections from different regulations, 
where we reuse the relatedness analysis core from [15] to 
compute relevancy between sections.  We then discuss the need 
and the challenges of mapping multiple taxonomies to a single 
regulation. Three different methodologies are investigated to 
cluster relevant concepts from different taxonomies in order to 
map them to one regulation.  The natural next step, mapping 
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Figure 1: Excerpt from OmniClass 
Construction Classification System 



multiple taxonomies to multiple regulations, is proposed as a 
future task. 

2. ONE TAXONOMY TO ONE 
REGULATION 
Mapping one taxonomy to one regulation is a simple keyword 
latching task.  We work with taxonomies from both the AEC 
industry and the environmental protection group to experiment 
with different types of taxonomies.  Figure 2 shows the 
International Building Codes (IBC) [11] latched with the 
OmniClass.  Industry taxonomies are hierarchical classification 
systems which are generally less than 10 levels deep.  Node labels 
in the taxonomy tree are treated as concept keywords, and they 
are mapped to sections in the regulation where they appear.  As 
regulations tend to be voluminous, we use a section as a unit of 
interest.  Users can then traverse the taxonomy and browse 
relevant sections of the regulation. 

Extending this mapping from one taxonomy to multiple 
regulations unfortunately leads to a classic problem of 
information overload.  It results in a Google-like user interface 
per taxonomy node, where sections from different regulations are 
interlaced.  For instance, the concept “chlorine” maps to over 30 
sections each in the Alabama and Arizona drinking water 
standards.  For web content, users quickly become frustrated with 
information overload, and intelligent retrieval and presentation of 
web results become the key issue for search [4].  Fortunately, 
regulatory documents are much more organized than web content, 
and we propose to solve the problem of information overload by 
clustering relevant sections from different regulations and 
pivoting on one regulation that the user is most familiar with. 

3. ONE TAXONOMY TO MULTIPLE 
REGULATIONS 
Traversing multiple regulation trees simultaneously using one 
taxonomy is a challenging problem.  It is not uncommon for 
industry practitioners to be familiar with one particular regulation 
but not others.  For example, architects might be familiar with 
California state code but not Federal code; nonetheless, some 
projects might require understanding of both [8].  In this scenario, 
it is beneficial to map the taxonomy to California code first, and 
then branch out to recommend related sections from the Federal 
code.  In general, focusing on one regulation as the base for 
recommendations of further readings from other regulations 
significantly reduces information overload.   

Figure 3 shows an example of linking multiple regulations.  After 
browsing down the taxonomy tree to the concept “chlorine”, users 
are shown a list of matched sections from the Alabama regulation.  
As illustrated in Section 2, matching sections to taxonomy 
concept is simply keyword latching.  Selecting Section 335.7.6.15 
of the AL code shows that there are 15 recommended sections 
from the Arizona regulation.  A user can stay focused on the 
regulation of their choice, and at the same time acquire relevant 
sections from other regulations as needed.  Part of the challenges 
to developing such a system is the desirable user interface, which 
is beyond the scope of this work.  The remaining challenge lies in 
the methodologies for making recommendations based on 
relevancies between sections from different regulations.  For this 
task, we reuse the relatedness analysis core from [15, 16], which 
compares sections from different regulations based on shared 
features using a cosine similarity measure.  The hierarchical and 
referential information are taken into account in the comparative 
analysis as well. 

Figure 3: Chlorine mapped to Section 335.7.6.15 in AL code, 
which have 15 related sections in AZ code 

4. MULTIPLE TAXONOMIES TO ONE 
REGULATION 
Apart from mapping one taxonomy to many regulations, we also 
attempt to map many taxonomies to one regulation.  As suggested 
in the Introduction section, there exist multiple taxonomies per 
industry for different applications.  Organizations are interested in 
translating from one taxonomy to another for various applications 
[2, 17].  Mapping regulations to a single taxonomy has limited 
usability of the system.  However, traversing regulations using 
multiple taxonomy trees pose a non-trivial problem.  There are 
much research effort on ontology merging  [21, 25], which 
provides a solution for data interoperability but not as a front-end 
representation format.  Users would need to learn the newly 
merged ontology in order to browse regulations, which defeats the 
original intent of using existing taxonomies to help locate 
regulatory provisions.  Using the same argument from Section 3, 
we believe that focusing on one taxonomy that users are familiar 
with is a good starting point to traverse regulations.  Once users 
reach a taxonomy node of interest, related concepts from other 
taxonomies can be suggested and users can switch their focal 
point from one taxonomy to another. 

Figure 2: Regulation Latched with Taxonomy Concepts 



Error! Reference source not found. illustrates the proposed 
system with two taxonomies, the OmniClass [22] and the IFC 
[10], mapped to the International Building Code [11].  The 
OmniClass is altered from its original representation, shown in 
Error! Reference source not found., to display a widget upon 
mouse-over that includes an ordered list of matching IBC sections 
and recommended relevant IFC concepts.  In this scenario, the 
user is more familiar with the OmniClass hierarchy, and thus 
starts browsing the IBC using this taxonomy.  For example, if the 
user is interested in “steel decking”, the system can help to locate 
a list of IBC sections that are related to “steel decking”, sorted in 
order of relevance, followed by a list of related IFC concepts 
including “slab”.  Mousing-over the IFC concept “slab” brings the 
focal point to the IFC hierarchy, where the user is presented with 
the same analysis – namely the IFC elements around this concept 
“slab”, a ranked list of matching IBC sections, and a ranked list of 
relevant OmniClass concepts. 

As opposed to locating related sections from multiple regulations, 
the task here is to identify similar or related concepts from 
multiple taxonomies.  Ontology mapping has been an active 
research area since the semantic web movement [18, 19].  It is 
difficult to interoperate among heterogeneous ontologies for 
generic web services; however, our problem is slightly more 
manageable since our ontologies are industry specific and are 
targeted towards the same group of users.  Similar to the 
techniques presented in Section 3, the relevance among concepts 
from different ontologies is computed using a vector comparison 
approach.  A document corpus is used to relate concepts by 
computing their co-occurrence frequencies.  This training corpus 
must be carefully selected as it represents the relevancy among 
concepts from different taxonomies.  Conveniently, we have a 
corpus of regulatory documents that are meticulously drafted and 
reviewed for accuracy.  Unlike web content, regulations are 
unlikely to have random co-occurrences of phrases in the same 
provision. 

Consider a pool of m concepts and a corpus of n regulation 
sections.  A frequency vector icr is an n-by-1 vector storing the 
occurrence frequencies of concept i among the n documents.  That 
is, the k-th element of icr  equals the number of times concept i is 
matched in section k.  In subsequent sections, we will discuss 
three metrics to compute the similarity score among concepts.  In 
our example shown in Error! Reference source not found., to 
relate “steel decking” from the OmniClass to “slab” from the IFC, 
we compute their similarity score based on the defined metrics.  
As shown in the figure, their cosine similarity score is 0.895, 
which ranks second among all IFC concepts that are relevant to 
“steel decking”. 

4.1 Cosine Similarity 
Cosine similarity is a non-Euclidean distance measure between 
two vectors.  It is a common approach to compare documents in 
the field of text mining [14, 20].  Given two frequency vectors icr  

and jcr , the similarity score between concepts i and j is 

represented using the dot product: 
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The resulting score is in the range of [0, 1] with 1 as the highest 
relatedness between concepts i and j. 

4.2 Jaccard Similarity Coefficient 
Jaccard similarity coefficient [20, 23] is a statistical measure of 
the extent of overlapping between two vectors.  It is defined as the 
size of the intersection divided by the size of the union of the 
vector dimension sets: 

Figure 4: Traversing the IBC using OmniClass Taxonomy with Relevant Concepts from the IFC Taxonomy
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Two concepts are considered similar if there is a high probability 
for both concepts to appear in the same sections.  To illustrate the 
application to our problem, let N11 be the number of sections both 
concept i and j are matched to, N10 be the number of sections 
concept i is matched to but not concept j, N01 be the number of 
sections concept j is matched to but not concept i, and N00 be the 
number of sections that both concept i and j are not matched to.  
The similarity between both concepts is then computed as 
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Since the size of intersection cannot be larger than the size of 
union, the resulting similarity score is between 0 and 1. 

4.3 Market-Basket Model 
Market-basket model is a probabilistic data-mining technique to 
find item-item correlation [9].  The task is to find the items that 
frequent the same baskets.  The support of each itemset I is 
defined as the number of baskets containing all items in I.  Sets of 
items that appear in s or more baskets, where s is the support 
threshold, are the frequent itemsets.   

Market-basket analysis is primarily used to uncover association 
rules between item and itemsets.  The confidence of an 
association rule jiii k →},...,,{ 21  is defined as the conditional 

probability of j given itemset },...,,{ 21 kiii .  The interest of an 
association rule is defined as the absolute value of the difference 
between the confidence of the rule and the probability of item j.  
To compute the similarities among concepts, our goal is to find 
concepts i and j where either association rule ji → or ij → is 
high-interest.   

Consider a corpus of n documents.  Using the same notations of 
N11, N10, N01 and N00 as in Section 4.2, the probability of concept 
j is computed as 
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and the confidence of the association rule ji → is 
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The forward similarity of the concepts i and j, which is the 
interest of the association rule ji →  (without absolute 
notation), is expressed as 
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The value ranges from -1 to 1.  The value of -1 means that 
concept j appears in every section while concept i does not co-
occur in any of these sections.  The value of 1 is unattainable 

because (N11 + N01) cannot be zero while confidence equals one.  
Conceptually, it represents the extreme case where the occurrence 
of concept j is not significant in the corpus, but it appears in every 
section that concept i appears. 

4.4 Evaluations of the Metrics 
The results of concept matching using the three metrics are 
compared with the result from domain experts.  Twenty concepts 
are randomly selected from the OmniClass and the IFC 
hierarchies respectively, and pairwise similarity scores are 
computed using the three metrics.  Root mean square errors 
(RMSEs) are used to measure the difference between the 
predicted values and the true values.  Precision and recall values 
are computed to evaluate the accuracy of predictions and the 
coverage of accurate pairs.  Precision measures the fraction of 
predicted matches that are correct whereas recall measures the 
fraction of correct matches that are predicted. 

Table 1 shows the results of the three metrics compared using the 
RMSE, precision and recall measures with a similarity score 
threshold of 0.4.  Jaccard similarity is not preferred due to its 
unacceptably low recall despite a perfect precision.  Cosine 
similarity appears to be average among the three metrics.  The 
market-basket model outperforms the other two metrics in terms 
of RMSE, and it also produced the highest recall with satisfactory 
precision. 

 Cosine Jaccard Market Basket 
RMSE 0.1000 0.1300 0.0825 

Precision 0.9130 1.0000 0.7955 
Recall 0.3559 0.1186 0.5932 
Table 1: Evaluation Results of the Three Metrics 

5. CONCLUSIONS & FUTURE TASKS 
Regulatory documents are written by government agencies who 
organize the material to suit the needs of the government as well 
as legal practitioners.  From industry practitioners’ standpoint, the 
original hierarchy might not be the easiest retrieval model for 
regulations.  In this work, we propose to map industry-specific 
taxonomies to regulations to increase usability of regulations by 
industry practitioners.  A running example from the AEC industry 
is shown to illustrate the need, the usage and the benefit of the 
mapping system. 

The 1-1, 1-n, and n-1 mapping between taxonomies and 
regulations are demonstrated.  We plan to implement an n-n 
concept-section mapping in the future, by combining the 
techniques of concept comparisons and section comparisons.  In 
section comparisons, the hierarchical information is used to 
enhance the analysis; we also plan to incorporate the hierarchical 
information of taxonomies into concept comparisons.  In concept 
comparisons, three similarity metrics are tested, whereas only 
cosine similarity is implemented for regulatory comparisons 
which are due for more testing.  Formal evaluations of the 
similarity metrics and the usability of the system are much 
needed. 
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